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Abstract

Background: The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile
fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon
Pogona vitticeps.

Findings: The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp
(179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated
reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of
single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of
reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome.
Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50
was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis,
Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406
protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured
99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete.

Conclusions: The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate
genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at
https://genomics.canberra.edu.au.
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Data description
The central bearded dragon, Pogona vitticeps, is wide-
spread through the arid and semi-arid regions of eastern
central Australia. This lizard adapts readily to captivity,
lays large clutches of eggs several times per season, and is
kept as a favoured pet species in Europe, Asia and North
America. The karyotype of P. vitticeps is typical of most
Australian agamids, consisting of six pairs of macrochro-
mosomes and ten pairs of microchromosomes (2n = 32)

[1]. The sex determining mechanism is one of female het-
erogamety (ZZ/ZW) and the sex chromosomes are a pair
of microchromosomes [2]. Sex determination, a primary
driver for our interest in generating this genome sequence,
is complex in this species, involving an interaction
between the influences of incubation environment and the
ZZ/ZW genotype [3, 4].

Samples and sequencing
DNA samples were obtained from a blood sample taken
from a single male Pogona vitticeps (Fabian, UCID
001003387339) verified as a ZZ male using sex-linked
polymerase chain reaction (PCR) markers [3] and cyto-
logical examination [2]. This work was undertaken in
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accordance with the Australian Capital Territory Animal
Welfare Act 1992 and the approval of the University of
Canberra Animal Ethics Committee. DNA was extracted
and purified using standard protocols and transported to
BGI-Shenzhen, China for sequencing. 13 insert libraries
were constructed with insert sizes of 250 bp, 500 bp,
800 bp, 2 kbp (x2), 5 kbp, 6 kbp, 10 kbp (x2), 20 kbp
(x2) and 40 kbp (x2) and subjected to paired-end se-
quencing on an Illumina HiSeq 2000 platform to gener-
ate 317 Gbp of raw sequence (Table 1). After filtering
for low-quality reads and duplicated reads arising from

Table 1 Summary of sequencing data derived from paired-end sequencing of 13 insert libraries using an Illumina HiSeq 2000
platform

Raw data Filtered data

Insert
size (bp)

Accession
numbers

Nunber of
libraries

Read length
(bp)

Raw data
(Gbp)

Average read
depth (X)

Physical
coverage (X)

Read length
(bp)

Filtered
data (Gbp)

Average read
depth (X)

Physical
coverage (X)

250 ERR409943 1 150 55.17 31.17 25.97 125 42.49 24.01 24.00

ERR409944

500 ERR409945 1 150 34.32 19.39 32.32 125 23.66 13.37 26.72

ERR409946

800 ERR409947 1 150 46.28 26.15 69.72 125 32.2 18.19 60.63

2,000 ERR440173 2 49 38.39 21.69 442.64 49 18.19 10.28 209.73

ERR409948

5,000 ERR409949 1 49 17.48 9.88 503.95 49 6.56 3.71 188.99

6,000 ERR409950 1 49 17.43 9.85 603.01 49 6.01 3.4 208.00

10,000 ERR409951 2 49 34.94 19.74 2,014.60 49 7.89 4.46 455.00

ERR409952

20,000 ERR409953 2 49 38.53 21.77 4,443.48 49 6.63 3.75 764.38

ERR409954

40,000 ERR409955 2 49 34.4 19.44 7,932.30 49 2.75 1.55 633.29

ERR409956

13 316.94 179.06 16,067.99 146.38 82.7 2,570.74

Read depth was calculated on the basis of a genome size of 1.77 Gbp. Average read depth, number of times on average a particular base is included in a read.
Physical coverage, the number of times on average a particular base is spanned by a paired read

Fig. 1 K-mer spectrum for the genome sequence of a male Pogona
vitticeps (ZZ). Sequencing DNA derived from the short-insert libraries
(250, 500, 800 bp) yielded 98.35 Gbases of clean data in the form of
125 bp reads, which generated 76.89x109 17-mer sequences. The solid
line shows the k-mer spectrum (percentage frequency against k-mer
copy number). The second mode (copy number 48.5) represents
homozygous single copy sequence, whereas the first mode (24.5), half
the copy number of the first, represents heterozygous single copy
sequence. Heterozygosity is high, which complicated assembly

Table 2 Statistics for the assembly contigs and scaffolds
(after gap filling)

Contig Scaffold

Size (bp) Number Size (bp) Number

N90 4,850 63,958 200,992 1,095

N80 12,159 42,491 670,865 644

N70 18,332 30,884 1,149,567 441

N60 24,540 22,654 1,671,674 311

N50 31,298 16,344 2,290,546 219

Longest 295,776 14,681,335

Total size 1,747,524,961 1,816,115,349

≥100 bp 636,524 545,300

≥2 kbp 79,002 4,356

Gap ratio 0 % 3.78 %
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PCR amplification during library construction, 146.38
Gbp of data were retained for genome assembly. This
amount of data represents an average read depth of 82.7
(Table 1), assuming a genome size of 1.81 pg, as esti-
mated for a female P. vitticeps by flow cytometry [5].
This mass converts to a genome size of 1.77 Gbp [6].
Reads from the short-insert libraries (250, 500 and

800 bp) were decomposed into short sequences of length
k (k-mers, with k = 17) using Jellyfish version 1.1 [7].
The histogram of k-mer copy number (Fig. 1) was
strongly bi-modal, the first mode with a copy number
that was half that of the second, which reflects the high
level of heterozygosity in this wild-caught lizard (0.85 %
of single nucleotide polymorphisms [SNPs] plus se-
quence insertions or deletions [indels]). The second
mode in the k-mer graph was used to obtain an estimate
of the genome size using the formula:

Average Read Depth ¼ Mode:
L

L−k þ 1
¼ 55:62 fold

Genome Size ¼ Total of Read Lengths
Average Read Depth

¼ 1:768 Gbp

where L is the read length (125 bp), k is the k-mer
length (17 bp), there are 98.35 Gbp of sequence data,
and the mode is taken from the k-mer graph (48.5,
Fig. 1). Our sequence-based estimate of 1.768 Gbp
agrees well with the estimate of 1.77 Gbp for the ZW
genome that was previously made using flow cytometry
data [4].

Assembly
Assembly was performed with SOAPdenovo (version
2.03) [8, 9]. Briefly, the sequences derived from the short-
insert libraries were decomposed into k-mers to construct
the de Bruijn graph, which was simplified to allow con-
nection of the remaining k-mers into contiguous sequence
(contigs). We then aligned the paired-end reads from
small and large-insert library sets to the contigs, calculated
the support for relationships between contigs, assessed the
consistent and conflicting relationships, and constructed
scaffolds. Finally, we retrieved paired reads that mapped
to a unique contig but had the other member of the pair
located in a gap region. Reads falling in the same gap
region were then assembled locally. The final assembly
(European Nucleotide Archive [ENA] accession number
ERZ094017) yielded a contig N50 of 31.3 kbp and a scaf-
fold N50 of 2.3 Mbp (N50 meaning that 50 % of the

Table 3 Number of predicted genes with RNA-seq signals

Specimen ID
(tissue ID)

Accession
number

Tissue Genotype Phenotype RPKM >0 RPKM >1 RPKM >5

Number Ratio (%) Number Ratio (%) Number Ratio (%)

1003347859 ERR753524 Brain ZZ Intersex 17,049 87.85 14,403 74.22 11,244 57.94

(AA45100)

1003338787 ERR753525 Brain ZZ Male 16,934 87.26 14,467 74.55 11,359 58.53

(AA60463)

1003348364 ERR753526 Brain ZW Female 17,121 88.23 14,526 74.85 11,474 59.13

(AA60435)

1003347859 ERR753527 Testes ZZ Intersex 16,874 86.95 13,874 71.49 10,784 55.57

(AA45100)

1003347859 ERR753528 Ovary ZZ Intersex 16,827 86.71 12,952 66.74 10,421 53.7

(AA45100)

1003338787 ERR753529 Testes ZZ Male 17,963 92.56 14,951 77.04 11,311 58.29

(AA60463)

1003348364 ERR753530 Ovary ZW Female 17,188 88.57 13,634 70.26 10,946 56.41

(AA60435)

Combined 18,833 97.05 17,646 90.93 15,974 82.31

Gene expression levels were measured as RPKM (reads per kilobase of gene per million mapped reads). Ratios are based on a total of 19,406 annotated
protein-coding genes

Table 4 The statistics for repeats in the P. vitticeps genome
annotated by different methods

Program Total repeat length
(bp)

Percentage of
genome

Tandem Repeats
Finder

59,773,950 3.42

Repeatmasker 174,011,206 9.96

Proteinmask 157,050,977 8.99

RepeatModeler 592,771,829 33.92

LTR Finder 65,464,996 3.75

Total 689,687,572 39.47
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genome sequence is contained in contigs, or scaffolds,
equal to or greater than this length), with unclosed gap re-
gions representing only 3.78 % of the assembly (Table 2).
Reads from small-insert libraries that satisfied our

filtering criteria were aligned to the assembly using
the Burrows-Wheeler Aligner (BWA, version 0.5.9-
R16) [10], allowing for eight mismatches and one
indel. Of the total number of reads (797.4 M), 96.4 %
could be mapped back to the assembled genome and
they covered 98.4 % of the assembly excluding gaps.
Bases in the assembled scaffolds had, on average,
reads mapped with 55X read depth. These data sug-
gest that we have assembled most of the P. vitticeps
genome. In addition, we used the CEGMA package
(version 2.4) [11] to map 248 core eukaryotic genes
to our P. vitticeps assembly. Our assembly captured
99 % (246 of 248) of the core CEGMA genes, with
93 % (231) being complete. This is a higher assembly
rate than that estimated for the green anole Anolis
carolinensis assembly (AnoCar2.0), which captured
93.6 % (232) of the core genes, with 85.9 % (213) be-
ing complete.

Transcriptomes
We generated transcriptome data from the brain, heart,
lung, liver, kidney, skeletal muscle and gonads of male and
female P. vitticeps (Table 3). None of the seven animals
from which we collected RNA was used in generating the
genome sequence. Two sets of sequencing runs on two
different male and female individuals were performed by
BGI-Shenzen, producing 309,436,077 90 bp paired-end
reads (ENA accession numbers ERR753524-ERR753530
and ERR413064-ERR413076). A third set of samples was
sequenced by The Ramaciotti Centre, University of New
South Wales, Australia, including a sex-reversed ZZ
female, producing 89,687,526 101 bp paired-end reads
(ENA accession numbers ERR413077- ERR413082). We
assembled these datasets (from all seven individuals) into
595,564 contigs using Trinity (release r2013_08_14) [12]
with default parameters (ENA accession number
ERZ097159). Only the first set of RNA-seq reads was
available for genome annotation (ENA accession numbers
ERR753524-ERR753530) but we make the entire dataset,
including our de novo assembly, available with this article
(see ‘Availability of supporting data’ section).

Table 5 Breakdown of repeat content of the Pogona vitticeps genome derived from RepeatMasker analysis

Category Repbase TEs TE proteins de novo Combined TEs

Length (bp) % of genome Length (bp) % of genome Length (bp) % of genome Length (bp) % of genome

DNA 25,035,683 1.43 6,450,126 0.37 56,943,252 3.26 70,663,766 4.04

LINE 124,676,466 7.13 132,747,210 7.60 191,015,014 10.93 213,508,152 12.22

SINE 20,281,741 1.16 - 0.00 54,941,907 3.14 57,180,364 3.27

LTR 7,613,766 0.44 17,931,338 1.03 16,104,019 0.92 28,021,391 1.60

Other 24,327 0.00 - 0.00 - 0.00 24,327 0.00

Unknown 761,119 0.04 - 0.00 283,563,847 16.23 284,276,315 16.27

Total 174,011,206 9.96 157,050,977 8.99 627,828,869 35.93 657,625,603 37.63

Abbreviations: LINE long interspersed nuclear element, LTR long terminal repeat, SINE short interspersed nuclear element, TE transposable element

Table 6 Characteristics of predicted protein-coding genes in the Pogona vitticeps assembly and comparison with Anolis carolensis,
Gallus gallus and Homo sapiens

Gene set Total Intact
ORF

Single exon
gene

Gene length
(bp)

mRNA length
(bp)

Exons per
gene

Exon length
(bp)

Intron length
(bp)

Homolog Anolis carolinensis 16,009 2,583 1,668 23,021 1,524 8.57 178 2,839

Gallus gallus 12,727 2,068 1,509 27,608 1,558 9.06 172 3,232

Homo sapiens 13,544 2,456 1,250 32,551 1,699 9.75 174 3,528

Combined 18,033 3,263 2,180 26,631 1,577 8.93 177 3,160

De novo (Augustus) 32,110 32,110 6,767 14,109 1,125 6.07 185 2,561

Transcriptome 22,986 14,555 2,951 12,511 1,214 6.99 174 1,885

Merged 19,406 12,172 1,999 26,215 1,642 9.24 178 2,984

Other
species

Anolis carolinensis 17,805 4,280 1,372 23,469 1,526 9.55 160 2,566

Gallus gallus 16,736 7,777 1,684 21,314 1,438 9.35 154 2,379

Homo sapiens 21,849 20,905 2,602 46,301 1,635 9.44 173 5,293

Except for the columns headed Total, Intact ORF and Single exon gene, the values presented are means.
Abbreviation: ORF open reading frame
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Annotation
Transposable elements and other repetitive elements were
identified using a combination of homology, at both the
DNA and protein levels, and de novo prediction. In the
homology-based approach, we searched Repbase [13] for
known transposable elements, used RepeatMasker [14] for
DNA homology search against the Repbase database, and
used WuBlastX to search against the transposable element
protein database provided within RepeatProteinMask
(bundled in RepeatMasker). In the de novo approach, we
used RepeatModeler [15] and LTR_FINDER [16] to pre-
dict repetitive elements. Tandem repeats were identified
using Tandem Repeats Finder [17]. The relative success of
the different approaches is shown in Table 4. Overall, we
identified about 690 Mbp of repetitive sequences account-
ing for 39.47 % of the genome, of which the predominant
elements were long interspersed nuclear elements (LINEs,
which accounted for 33 % of repetitive sequences repre-
senting 12.2 % of the genome) (Table 5).
We combined homology-based, de novo and

transcriptome-based methods to predict gene content of
the assembly. In the homology-based prediction, the as-
sembly was annotated by generating reference sets of A.
carolinensis, Gallus gallus and Homo sapiens proteins,
and aligning the reference sets to the assembly using
TBLASTN (version 2.2.23; E-value ≤ 1 × 10−5). The result-
ant homologous genome sequences were then aligned
against matching proteins using Genewise (version wise2-
2-0) [18] to define gene models. In the de novo prediction,
we randomly selected 1,000 genes with intact open reading
frames (ORFs) as predicted by the homology-based ap-
proach to train the Augustus gene prediction tool (version
2.5.5) [19] with the parameters appropriate to P. vitticeps.
The de novo gene prediction was then performed with

Augustus applied to the genome after repeat sequences
were masked as described above. In the transcriptome-
based approach, we mapped transcriptome reads to the
assembly using TopHat (version 1.3.1) [20], which can
align reads across splice junctions. These mapped reads
were assembled into transcripts using Cufflinks (version
1.3.0) [21] and then merged across samples (n = 7, Table 3)
into a single transcriptome annotation using the Cuff-
merge option.
The results of the three approaches were combined into

a non-redundant gene set of 19,406 protein-encoding
genes, 63 % of which included intact ORFs (Table 6). Most
of the predicted genes were supported by RNA-seq signals
(Table 3).
To assign gene names to each predicted protein-coding

locus, we mapped the 19,406 genes to an Ensembl library
collated from A. carolinensis, chicken G. gallus, human H.
sapiens, western clawed frog Xenopus tropicalis and zebra-
fish Danio rerio. The name associated with the best hit for
each P. vitticeps gene was assigned to each of 19,083 genes.
Most of these genes (16,510) mapped to a homolog even at
high stringency (>80 % of protein length aligned).

Bacterial artificial chromosome library
A large-insert genomic DNA bacterial artificial chromo-
some (BAC) library was constructed from DNA from a
wild-caught female dragon lizard (TC1542) confirmed to
have the ZW genotype using sex-linked PCR markers
[3, 4] and cytologically [3]. The library is estimated to
represent 6.3× of genome coverage, and is comprised of
92,160 clones with an average insert size of 120 kbp.
This resource is commercially available through Amplicon
Express (Pullman, WA, USA; http://ampliconexpress.com).

Table 7 Comparison of mean GC content for available tetrapod genomes

Organism Genome version Mean GC SD

Pogona vitticeps pvi1.1.Jan.2013 0.418 0.037

P. vitticeps - microchromosomes pvi1.1.Jan.2013 0.445 0.050

P. vitticeps - macrochromosomes pvi1.1.Jan.2013 0.409 0.029

P. vitticeps - Z chromosome pvi1.1.Jan.2013 0.469 0.037

Xenopus tropicalis JGI_4.2 0.398 0.038

Anolis carolinensis AnoCar2 0.403 0.032

Canis familiaris CanFam3.1 0.413 0.069

Mus musculus GRCm38 0.417 0.046

Gallus gallus Galgal4 0.416 0.059

Crocodylus porosus croc_sub2 0.442 0.050

Pelodiscus sinensis PelSin_1.0 0.441 0.053

Chrysemys picta ChrPicBel3.0.1 0.437 0.055

Python bivittatus python_5.0 0.396 0.042

Ophiophagus hannah GCA_000516915.1 (NCBI) 0.386 0.040

Abbreviation: SD standard deviation
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Anchoring sequences to chromosomes
Our previously published cytogenetic map of P. vitticeps
consisted of 87 BACs that were mapped to the macrochro-
mosomes (64 BACs) and microchromosomes (23 BACs)
[1]. We mapped an additional 80 BACs, extending the set
to 125 markers on macrochromosomes and 42 on micro-
chromosomes. Sequence scaffolds were anchored to chro-
mosomes by 52 loci, contained in the BACs, that are
conserved in homologous syntenic blocks across amniotes
(A. carolinensis, G. gallus, H. sapiens). By using gene syn-
teny information 37.9 % (670 Mbp) of the sequenced

genome has been assigned to chromosomes (Deakin et al.,
unpublished data).

Sex chromosome sequences
The sex of P. vitticeps is determined by a combination of
chromosomal constitution and influence of environmental

Fig. 2 Distribution of GC content in 5 Kbp windows for a range of
vertebrates including Pogona vitticeps

Fig. 3 Variation in GC content among windows for various genome
sequences with increasing window size (5, 10, 20, 40, 80, 160, and 320
Kb windows). The relationship for Pogona vitticeps is disaggregated
to macrochromosomes, microchromosomes and the Z sex
chromosome for comparison. Scale of X axis is natural logarithm.
Pogona macrochromosomes share the lack of isochore structure
reported for the Anolis genome

a

b

c

Fig. 4 Analysis of GC content in Pogona vitticeps. a, Distribution of GC
content in all chromosomes, macrochromosomes, microchromosomes
and the Z chromosome, calculated with a non-overlap 5-kb sliding
windows ; b, GC content of various components of the genome, in
comparison with the average GC content for macrochromosomes (red
line), microchromosomes (green line) and the Z chromosome (blue
line) ; c, GC content of the macrochromosomes, microchromosomes
and Z chromosomes broken down for various components of
the genome
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Table 8 Comparison of sequencing platform, assembler, and assembly statistics for the reptiles for which a genome sequence is available

Bearded
dragon

Burmese
python

King cobra Saltwater
crocodile

Chicken Green anole American
alligator

Gharial Chinese softshell
turtle

Green sea
turtle

Western painted
turtle

Pogona
vitticeps

Python
bivittatus

Ophiophagus
hannah

Crocodylus
porosus

Gallus gallus Anolis
carolinensis

Alligator
mississippiensis

Gavialis
gangeticus

Pelodiscus
sinensis

Chelonia
mydas

Chrysemys picta

Assembler SOAP
deNovo

SOAP deNovo CLC NGS
Cell (version
2011)

AllPaths
(version
R41313)

Celera
Assembler
(version 5.4)

Arachne
(version 3.0.0)

Allpaths
(version
R41313)a

SOAP
deNovo

SOAP deNovo SOAP
deNovo

Newbler

Sequence method Illumina
HiSeq 2000

Illumina GAIIx &
HiSeq 2000,
Roche 454

Illumina
HiSeq

Illumina GAII &
HiSeq 2000

Sanger,
Roche 454

Sanger Illumina GAII
& HiSeq 2000

Illumina GAII Illumina HiSeq
2000

Illumina
HiSeq 2000

Roche 454,
Illumina, Sanger

Average read depth 85.5X 20X 28X 74X 12X 7.1X 68X 109X 105.6X 110X 15X

Genome size (Gbp) 1.77 1.44 1.36–1.59 2.12 1.20 2.17 2.88 2.21 2.24 2.6

Total bases in contigs
(excluding unknown
bases, Ns)

1,747,541,145 1,384,532,810 1,380,486,984 2,088,185,434 1,032,841,023 1,701,336,547 2,129,643,287 2,198,585,703 2,106,622,020 2,110,365,500 2,173,204,098

Total bases in
scaffolds

1,816,115,349 1,435,035,089 1.66 Gbp 2,120,573,303 1,046,932,099 1,799,143,587 2,174,259,888 2,270,567,745 2,202,483,752 2,208,410,377 2,365,766,571

No. of scaffolds
(>100 bp)

543,500 39,113 - 23,365 16,847 6,645 14,645 9,317 19,904 140,023 78,631

N50 scaffold (kbp) 2,291 214 226 204 12,877 4,033 509 2,188 3,351 3,864 6,606

No. of contigs
(>100 bp)

636,524 274,244 816,633 112,407 27,041 41,986 114,159 177,282 205,380 274,367 262,326

N50 contig (kbp) 31.2 10.7 5.2 32.7 279 79.9 36 23.4 22.0 29.2 21.3

Repeat content 39.5 31.8 35.2 37.5 9.4 34.4 37.7 37.6 42.47 37.35 9.82

No. protein-coding
genes

19,406 17262 - 13,321 15,508 17,472 23,323 14,043 19,327 19,633 –

Information is taken from the NCBI database (http://www.ncbi.nlm.nih.gov/assembly), with additional data from the primary papers in which the findings were originally published. aManual scaffolding
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temperature on the developing embryo. P. vitticeps has fe-
male heterogamety (with ZZ male and ZW female individ-
uals), and the Z and W chromosomes are among the ten
pairs of microchromosomes [2]. Sex chromosome hetero-
morphy is evident by C-banding, but the degree of differ-
entiation of the Z and W chromosomes is slight [2]. The
sex chromosomes of P. vitticeps are not homologous to
the sex chromosomes of chicken (G. gallus) or other
reptiles so far examined [22]. The ZZ genotype is re-
versed to a female phenotype at high incubation tem-
peratures [3, 4].
Our laboratory has previously identified a sex-linked

sequence using amplified fragment length polymorphism
screening and genome walking [4, 23]. Five contiguous
BAC clones containing sex-linked markers that map to the
sex chromosome pair were sequenced to reveal 352 kbp of
P. vitticeps sex chromosome sequence [24]. This region
contained five protein-coding genes (oprd1, rcc1, znf91,
znf131 and znf180) and several major families of repetitive
sequences (long terminal repeat [LTR] and non-LTR retro-
transposons, including chicken repeat 1 [CR1] and bovine
B LINEs [Bov-B LINEs]) [1, 24].
More recently, we amplified micro-dissected W-

chromosome fragments to yield many sex chromosome

sequence tags that were reciprocally mapped to their Z
homologs (Matsubara et al., unpublished data). All putative
sex chromosome scaffolds were confirmed to co-localize
with the known ZW-BAC Pv3-L07 when physically
mapped (Deakin et al., unpublished data). In this way we
identified 12.8 Mbp of the Z chromosome (on three scaf-
folds) and increased the number of confirmed sex chromo-
some genes to 240 (Deakin et al., unpublished data).

GC content and isochore structure
We investigated patterns of GC content variation in the
P. vitticeps genome using two approaches. First, we
examined the absolute GC content in non-overlapping 5
kbp windows for several genomes (P. vitticeps, A. caroli-
nensis [25], Burmese python Python bivittatus [26], king
cobra Ophiophagus hannah [27], western painted turtle
Chrysemys picta [28],Chinese softshell turtle Pelodiscus
sinensis [29], saltwater crocodile Crocodylus porosus [30]
chicken G. gallus, mouse Mus musculus, domestic dog
Canis familiaris [31] and western clawed frog X. tropica-
lis [32]; Table 7; Fig. 2). We then examined variation in
GC composition for these same genomes at increasing
spatial scales (5, 10, 20, 40, 80, 160 and 320 kbp win-
dows; Fig. 3). We also looked at different subsets of the

Fig. 5 Comparisons of gene parameters among Pogona vitticeps, Gallus gallus, Python bivittatus, Anolis carolinensis, and Pelodiscus sinensis
genomes
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P. vitticeps genome, including macrochromosomes and
microchromosomes, and the Z chromosome (Fig. 4a), by
restricting the analysis to scaffolds that have been phys-
ically mapped (Deakin et al., unpublished data).
The macrochromosomes of P. vitticeps are largely de-

void of variation in GC content at small (5 kbp) spatial
scales. In fact, P. vitticeps macrochromosomes are more
uniform in terms of GC distribution than is the A. caro-
linensis genome (standard deviation 0.029 versus 0.032
respectively; Table 7). With the exception of the Z
microchromosome, P. vitticeps microchromosomes pos-
sess a heterogeneous distribution of GC-rich sequences
over 5 kbp windows (Fig. 4a). In this regard, P. vitticeps
microchromosomes resemble those of birds but differ
markedly from those of A. carolinensis, whose GC con-
tent more closely resembles that of the macrochromo-
somes [33]. Intriguingly, the Z microchromosome of P.
vitticeps has an average GC content comparable to that
of coding sequences and short interspersed nuclear ele-
ments (SINEs) (Fig. 4b), which suggests that this chromo-
some may be enriched in these GC-rich components of
the genome. However, with the exception of LTR trans-
posable elements, all components (CDS, introns, tandem
repeats and transposable elements) showed greater GC
content if they resided on the Z chromosome than else-
where (Z chromosome > microchromosomes > macrochro-
mosomes; Fig. 4c), suggesting that there are other, as yet
unidentified, reasons for the observed variation in GC con-
tent across different chromosome classes.
When variation in GC distribution is considered over

larger spatial scales (tens to hundreds of kbp, Fig. 3), the
P. vitticeps macrochromosomes are similar to the A. caro-
linensis genome, which lacks substantial variation in GC
composition, a striking departure from isochore patterns
seen in mammals and birds [33]. The Z chromosome, too,
lacks substantial heterogeneity over larger spatial scales,
which perhaps reflects the uniform distribution of repetitive
elements along its length [24]. Only the autosomal micro-
chromosomes of P. vitticeps bear any similarity in GC distri-
bution to the other sauropsid genomes examined. The P.
vitticeps genome, therefore, has compositional patterns dis-
tinct from that of A. carolinensis, which indicates that differ-
ent processes have shaped the genomes of the two lizards
since they shared a common ancestor 144 million years ago.

Comparison with other assemblies
P. vitticeps and A. carolinensis had similar scaffold N50
values (2.29 Mbp and 4.03 Mbp, respectively). These
values for P. vitticeps are surprisingly good, as its gen-
ome was assembled from short read sequences, whereas
that of A. carolinensis was generated using Sanger
sequencing. Our assembly compares well to nine other
sauropsid genomes, including those of two squamates,
two turtles and three crocodilians (Table 8).

The gene parameters listed in Table 6 compare well to
those of other vertebrates (see also Fig. 5).

Concluding remarks
The quality of the P. vitticeps assembly is comparable to
that of other published squamate genomes. This genome
assembly, coupled with the availability of a BAC library
and the development of a high-density physical map for
each chromosome, provides an unparalleled resource for
accelerating research on sex determination, major histocom-
patibility complex evolution, and the evolution of adaptive
traits in squamates to complement the advances brought
about by the sequencing of the A. carolinensis genome [25].

Availability of supporting data
The genomic and transcriptomic sequence reads and as-
semblies have been deposited in the ENA under the pro-
ject accession number PRJEB5206 (see Additional file 1
for a complete list of accession numbers). The genome
sequence has been submitted to GigaDB [34] along with
other supporting resources, including:

� SoapDeNovo2 pvi1.1.Jan2013 genome assembly
(ENA accession number ERZ094017)

� Trinity de novo transcriptome assembly (ENA
accession number ERZ097159)

� Peptide and coding sequences for the pvi1.1.Jan2013
assembly

� Gene annotations and repeat annotations for the
scaffolds

� Sequence Read Archive accession numbers for all
sequencing runs.

The annotated P. vitticeps genome sequence can be
accessed through a publicly available genome browser [35].

Additional file

Additional file 1: ENA accession numbers. (XLSX 18 kb)
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